
P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 1 1 J U L Y 1963 

Pressure Broadening as a Prototype of Relaxation 
U. FANO 

National Bureau of Standards, Washington, D. C. 
(Received 13 February 1963) 

The theoretical results of Baranger, Kolb, and Griem on pressure broadening are rederived by a more 
compact and flexible procedure directly applicable to other relaxation processes. Pressure broadening is 
worked out to first order in the pressure, including previously disregarded corrections. The procedure adapts 
the concepts and techniques of scattering theory to the Liouville representation of density matrices. Its key 
quantity is a frequency-dependent relaxation operator (Me(oo)) introduced by Zwanzig. 

1. INTRODUCTION 

CONSIDERABLE progress has been made in the 
understanding and treatment of relaxation proc­

esses on a microscopic basis. However, the appreciation 
of this progress has been limited by the diversity and 
complexity of the formalisms that have been employed. 
Among these formalisms, the one developed by Zwanzig1 

recommends itself for its remarkable compactness and 
adherence to physical concepts. The present paper 
intends to illustrate and develop implications of the 
Zwanzig method with particular reference to the broad­
ening and shift of spectral lines of a gas due to interac­
tion among gas molecules. 

This phenomenon, called "pressure broadening/' is 
usually studied in the range where the observed effect 
is proportional to the gas pressure, i.e., to the collision 
frequency. Accordingly, it can be traced, in this range, 
to a sequence of separate elementary processes, namely 
collisions between pairs of molecules. Each elementary 
process is amenable—in principle and, to some extent, 
in practice—to detailed experimental and theoretical 
analysis. On the other hand, pressure broadening con­
cerns the radiative properties of single molecules, irre­
spective of the effects of collisions on all other molecules. 
In fact, the surrounding gas acts merely as a thermal 
bath with respect to each molecule that emits or ab­
sorbs light. Thus, theory must express the macroscopic, 
thermal bath effect on spectral lines in terms of micro­
scopic collision parameters integrated over the final 
state of perturbing molecules. Numerous other phe­
nomena, such as the electric resistance due to impurities, 
belong the same class of relaxation effects which are 
amenable to rather detailed analysis. 

A modern quantum theory of pressure broadening 
has been given by Baranger2; substantially equivalent 
results have been obtained independently by Kolb and 
Griem.3 These authors were particularly concerned with 
ionized gases (plasmas) where long-range interactions 

1 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); Lectures in 
Theoretical Physics, edited by W. E. Brittin (Interscience Pub­
lishers, Inc., New York, 1961), Vol. I l l , p. 106; Phys. Rev. 124, 
983 (1961). 

2 M. Baranger, Phys. Rev. I l l , 481,494 (1958); 112, 855 (1958), 
referred to here as "BI," "BII," and "B i l l " ; also in Atomic and 
Molecular Processes, edited by D. Bates (Academic Press Inc., 
New York, 1962), Chap. 13. 

3 A. C. Kolb and H. Griem, Phys. Rev. I l l , 514 (1958). 

raise special problems. We shall have in mind primarily 
neutral gases, where very accurate observations of 
rotational spectra under the influence of rare-gas buffer 
pressure have been performed.4 

The principal content of this paper is a rederivation 
of the Baranger results by a procedure that emphasizes 
their general significance and applicability. This pro­
cedure may be described as an extension of the Lippman-
Schwinger scattering theory to the Liouville repre­
sentation, which is described in Sec. 2b and which is 
appropriate to the elimination of irrelevant variables. 
Like the scattering theory, the procedure of this paper 
emphasizes the physical quantities of experimental in­
terest, the relationships among them and the equations 
which they obey, without facing yet the problem of 
their actual computation. 

As a by-product, analytical formulas will be obtained 
in this paper that represent previously disregarded 
corrections. In particular, the treatment will be worked 
out completely to first order in the gas density, and the 
structure of the second-order terms will be described. 

The following question seems worth mentioning 
because it is accessible to direct experimental investiga­
tion in pressure broadening and also in other phe­
nomena. Pressure broadening replaces each atomic (or 
molecular) spectral frequency comn with a modified 
frequency 

n (*>mn i ^ w -VWr, (l) 

where dmn is the shift and wmn the pressure-induced 
half-width. According to the Rydberg-Ritz combination 
principle, whose experimental discovery led into the 
quantum theory of atoms, the two-index set of un­
perturbed frequencies a)mn can be represented by 

in terms of the single-index set of spectral 
terms rm, which correspond to the atomic energy levels. 
Now, does the Rydberg-Ritz principle still apply to 
the set of pressure-broadened line frequencies? That is, 
can we write 

m? (2) 

Examination of the Baranger results2 will show in Sec. 
5b that (2) holds only in the approximation where each 
collision exerts a small perturbation on the radiating 

4 See, e.g., A. Ben-Reuven, S. Kimel, M. A. Hirshfeld, and J. H. 
Jarre, J. Chem. Phys. 35, 955 (1961). 
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system. In this approximation the broadening is much 
smaller than the shift. 

Validity of (2) would imply that the effect of molec­
ular collisions upon the radiating system can be 
simply taken into account by adding a non-Hermitian 
term to the system's Hamiltonian. The eigenvalues of 
the perturbed Hamiltonian would be represented by 
fifm. Such Hamiltonians have often been utilized for 
the phenomenological treatment of relaxation processes; 
experimental investigation of (2) provides a test of their 
validity. Also, the broadening of energy levels of an 
atomic system may be attributed to a fluctuating per­
turbation or to decay of the system into some channel 
or other. Validity of (2) implies then that the fluctua­
tions or the decays of two levels m and n are uncorre­
c t e d ; its breakdown implies the existence of correla­
tions (i.e., interference effects) which are characteristic 
for each pair of states, that is, for the nonstationary 
radiating state represented by their superposition. 
These considerations are, of course, relevant to all 
quantum relaxation processes. 

2. GENERAL TREATMENT 

a. Initial Formulation 

When a charged particle performs a motion described 
by r(r) and subject to statistical fluctuations, the spec­
trum of the radiation it emits or absorbs does not 
depend on the Fourier components of r (r) itself, because 
these vanish in general when averaged over the fluctua­
tions. I t is the correlation between successive positions 
r ( r ) , t(r+t) at short intervals of time / which does not 
average out and determines the radiative behavior of 
the particle. The autocorrelation function (r(r) - r ( r + 0 ) 
is a statistical average (expectation value) over the 
fluctuations, and is independent of r if the fluctuations 
are in a steady state. The radiative spectrum depends 
on the "power spectrum" of the fluctuating motion, 
that is, on the components of the Fourier analysis of 
the autocorrelation function with respect to the interval 
t, which may be evaluated for r = 0 in a steady state. I t 
suffices to consider separately the autocorrelation of 
each cartesian component of r. 

In accordance with these considerations, the spectral 
distribution emitted or absorbed by a molecule of 
interest under the influence of collisions with other gas 
molecules has been characterized [see, e.g., BII (8), 
(10)] in terms of the Fourier transform of a correlation 
function 

/»00 

F(SS) = TT1 Re / eiat Tr {xx(t)p}dt. (3) 
Jo 

This formula should be understood in the sense that 

lmco=€>0 (3a) 

and that the limit e —» 0 should be taken eventually. 

The Tr{ • • •} in (3) represents the quantum-mechanical 
expectation value of the product of the dipole operator 
x and of the same operator in the Heisenberg represen­
tation evaluated after an interval /, 

x(t) = eiHtxe~iHK (4) 

Here H represents the total Hamiltonian of all inter­
acting molecules divided by fi, i.e., measured in radian/ 
sec rather than in ordinary energy units. The expecta­
tion value in (3) pertains to a state of the whole gas 
represented by its density matrix. I t is usually—and 
rather reasonably—assumed that this state is time-
independent (i.e., that p commutes with H) and in 
thermal equilibrium and that the correlations between 
the molecule of interest and the rest of the gas are 
negligible for our purpose in this state. We shall return 
to this assumption at the end of Sec. 2. 

The practice of focusing from the outset on the 
analytic, even though formal, expression (3) of the 
observable quantity of interest has helped our under­
standing of statistical mechanics and other many-body 
problems. I t is also characteristic for such formal ex­
pressions to involve time correlation functions.5 Bar-
anger's treatment of pressure broadening centers on 
the time evolution operators in (4) and specifically on 
the average of these operators over the irrelevant gas 
variables, to be taken in accordance with (3). For this 
reason the treatment is independent of the nature of 
the variables whose correlation is being considered (the 
dipole operators in our problem) and of all but a few 
features of the problem on hand. 

Notice also the following alternative interpretation of 

Tr{xx(t)p} = Tr{xe~iHt(px)eiHt}. (5) 

The expression on the right represents the expectation 
value of the dipole moment x for a state that was 
characterized at / = 0 by a density matrix (px) and has 
evolved from that time up to time t as specified by the 
Schrodinger equation for a density matrix. More specifi­
cally px represents the perturbation of p induced by an 
impulsive interaction with radiation at £=0 ; an un­
perturbed stationary p corresponds to a state with 
vanishing dipole moment.6 Thus, the structural elements 
of the quantity of interest (3) are: A density matrix, of 
which only few characteristics will prove important, a 
pair of time evolution operators or, rather, its Fourier 
transform, and the dipole operator x of which it only 
matters that it pertains to one, or to a very few, among 
the very numerous variables of the whole gas. 

6 See, e.g., the article by R. Kubo in Lectures in Theoretical 
Physics, edited by W. E. Brittin (Interscience Publishers, Inc., 
New York, 1959), Vol. I, p. 120; and W. Bernard and H. B. 
Callen, Rev. Mod. Phys. 32, 1017 (1959). 

6 Non-Hermitian operators, such as px and xxit), appear in 
formulas (5) and (3) for economy of notation. Use of correspond­
ing, physically significant, Hermitian operators is actually in­
tended and their contribution is, in effect, selected out by the 
"real part" symbol in (3), 
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b. The Liouville Operator Representation 

The pair of time evolution operators in (5) or (4) 
transforms the operator (px) or x. This role is empha­
sized by regarding7 the whole set of elements of a 
matrix, e.g., the elements pmn of p, as the set of com­
ponents of a vector. The Schrodinger equation for a 
density matrix 

dp/dt=-i(Hp-PH) (6) 

represents then an infinitesimal orthogonal transforma­
tion (i.e., a "rotation"8) of this vector and is con­
veniently written in the form 

dp/dt——iLp, (7) 

where L is a Hermitian Liouville operator9,10 defined by 

\^P)mn~ 2^mfn' •L/mn,m,fnfPm'n') \y) 

L,mn,m'n' ~ H mrn'Onn' Umm'tln'n 

tL mm'Onn' Omm'tLn (8a) 

This definition of L will be written more briefly 

L=H-H*, (8b) 

where the asterisk denotes complex conjugation and will 
recall that H and 27* operate on different variables; 
this property can be further stressed by writing in ex­
plicitly the unit operators of (8a) in the form 

L=HI*-IH*. (8c) 

In terms of the Liouville operator, Eq. (5) becomes 

Tr{xx(t)p} = Ti{xe-iLt(px)}. (9) 

The Fourier transformation in (3) can now be carried 
out formally to yield 

F(<a) = -7T-1 Im Tr x (px) , (10) 

where (co—L)~l plays the role of the resolvent operator 
in the Liouville representation and embodies the com­
plete dynamics of our problem. 

7 See, e.g., U. Fano, Rev. Mod. Phys. 29, 74 (1957), to be 
referred to as "F , " in particular Sees. 6 and 7. 

8 The Larmor precession of the mean magnetic moment of an 
atomic particle in a magnetic field is the special case where the 
representative space of this rotation coincides with the physical 
space. See F, Sec. 4a. 

9 The name "Liouville operator" derives from the classical 
mechanics analog, which represents the same transformation as 
a Poisson bracket. Classical statistical mechanics has utilized an 
equation identical with (7) except that p represents a classical 
distribution function. Equation (7) is introduced in reference 5. 
BII and B i l l utilize a "doubled atom representation" equivalent 
to the one described here. 

10 It was stressed in F that the set of matrix elements pmn 
can be replaced by any linearly independent set of variables 
Pj=^mnAjtmnpmn. This replacement changes L into ALA"1. 
The pj are real if Ajtnm—Aj,mn*, because p is Hermitian; in this 
case 12=— iL is real and skew-symmetric and it represents an 
infinitesimal rotation of real cartesian coordinates. The use of 
variables py simplifies the notation because it replaces the double 
index (m,n) by the single j . 

c. Elimination of the Thermal Bath Variables 

A main feature of the Zwanzig approach1 is to make 
maximum use of the Liouville operator and to postpone 
as far as possible any specification of its structure for 
the problem under consideration. At this point it is 
important only to distinguish a radiating molecule (the 
"system" of interest), the rest of the gas (the thermal 
"bath") and their interaction. Accordingly, we write 
the Hamiltonian of the whole gas as 

#=#o ( s )+#o ( 6 )+F, (11) 

where H0
(s) pertains to the molecule of interest exclusive 

of interaction with the other molecules, H^h) is a zero-
approximation Hamiltonian for the other molecules and 
V the interaction between molecules. (The interaction 
between "other molecules" is included in V for conven­
ience in the later expansion into powers of the gas den­
sity.) We call 7>, 7v • • the eigenvalues of H0

(s) and 
TajTp—' those of Ho(b). In accordance with (8b) and 
(11) we set then 

L - L o + X i (12) 

i 0 = Z o ^ + ^ o ( W = Ho ( a ) -Ho ( ' ) *+ffo ( W - f fo ( W * , (12a) 

LL=V-V*. (12b) 

Each row or column of the matrix L is identified by a 
group of four indices in the scheme of eigenstates of Ho, 
because each of these eigenstates, say m, is an eigen-
state fx of /7o(s) and a of #o ( 6 ) . The matrix elements of 
Zo are then 

(io), ]fia,pp; n'a ,v $r=L{Tfi—'rv)-{-(Ta—Tp)~]hiill'bvv'baa>§W 

= (Wfip-hoJapJdw'dw'daa'Spp' ( 13 ) 

We wish now to eliminate, at least formally, the 
thermal bath variables from (10), i.e., to carry out—or 
at least to condense in more suitable form—the summa­
tion over indices a, /?• • • which is a part of the trace 
operation. To this end it is convenient to disentangle 
the interaction portion of L, namely Lh from the rest 
of the resolvent operator (co—L0—Li)~x. This is achieved 
by the operator identity 

i 1 r x i 
= 1+J|f (w) , 

co—LQ—Li co—ZQL co—LQJ 

(14) 

where M is an operator with the equivalent expressions 

Jf(«) = 
1 1 

-L1=L1-
l - Z x C c o - Z o ) - 1 l - t c o - Z o ) - 1 ^ ! 

= Z i + £ i -
c o — L Q — L I 

-U=L. £ r-UT, 
w=0 LcO — LQ J 

(14a) 

which contains the interaction dynamics and vanishes in 
the weak-interaction limit V=Li=0. 
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According to initial assumption, the density matrix 
p in (10) includes no significant correlation between 
the system and bath variables, and has, therefore, 
(F, Sec. 3h)7 the product form10a 

p=p^p^. (15) 

Moreover the distribution of gas molecules among the 
eigenstates of # 0

( 6 ) is stationary, so that 

Pa$ (&) = faSap, (16) 

this assumption being included in that of thermal 
equilibrium. 

The factor dap in (16) causes the Z,0
(6) contribution 

to Zo to vanish whenever Zo, being on the right side of 
(14), operates on (px) [see Eq. (13)]. The trace opera­
tion introduces the same factor dap on the left of (14). 
Therefore, both Z0 operators on the right-hand side of 
(14) reduce to Z0

( s ) and the trace operation over bath 
variables bears only on the product of M(co) and p ( 6 ) , 
thus generating the mean value 

<M(co)) = Tr&[M(a,)p(6>]. (17) 

This mean value is still a Liouville operator of the 
"system" variables, represented by the matrix 

\lvl \&)/ixv,p,'v' 2-*CLCL' ^fJ.a,va; \i.'a' ,v'a']a' (17a) 

The operator (M(a>)) represents the complete influence 
of the bath on the system of interest. The desired spec­
tral distribution function (10) is now expressed as a 
trace over variables of the molecule of interest 

F(oi) = ir~1 Im TTIMU-LQW)-1 

X[l+<M(o; ) ) (co-Lo^) - 1 ] (p^x)} . (18) 

d. The Zwanzig Resolvent Operator 

Zwanzig1 constructed an equation of motion for the 
system of interest in which the effect of interaction with 
other variables is represented by a complement to the 
Liouville operator Z0

( s ) of the system. The resolvent of 
Zwanzig's equation is obtained by "re-entangling" (M) 
with Lo(s), applying (14) in reverse 

1 

co-L0
( 8 ) 

with 

(MM)) 

1+(M(, •«)> 1 = 
' co-Zo(3)J 

1 

<M(co)> 

(19) 

l+(M(a>))(«-io( ,))-

= (M)£[ -Of>T. (20) 

10a Note added in proof. The approximation implied by Eq. (IS) 
is commented upon at the end of Sec. 2. While it is adequate to 
lowest order in the density, it would be of interest to sharpen its 
characterization and to treat the corrections neglected here sys­
tematically by successive approximations. 

(The subscript "c" stands for "connected," for reasons 
explained in Sec. 3b-l.) Equation (18) becomes now 

F(o>) = -7T-1 Im Trs{a£co-Z,0
(8) 

-<M c (o , )>] -V s ) *)}- (21) 

Zwanzig's equation of motion yields Mc(co) directly, 
rather than as a function of M, in the form 

J f . = | I l - £ i ( l - P ) ( « - L o ) - 1 J - 1 £ i 

= £ i L C ( i - - P ) ( « - i o ) - 1 i J » , (22) 
rc=0 

which differs from the definition (14a) of M by the in­
sertion of the factor (1—P). Here P represents a pro­
jection operator defined by11 

PApW = p^ Trb{Ap^}. (23) 

Equations (22) and (14a) imply 

Af c= ll+MPicc-Lo^-^M, (24) 

which leads, in turn, to (20). 
Equation (21) is analogous to BII(62), but the 

operator 3C in that reference, which corresponds to 
(Mc), was obtained only after simplifying assumptions 
relevant to the phenomenon of pressure broadening. 
Here it is stressed that (21) has very general significance, 
and that the determination of the properties of (Mc) 
and its evaluation for any specific problem can be 
taken up separately, as in the following sections of 
this paper. 

Recall, at this point, that the only essential assump­
tions in the derivation of (21) are represented by (11), 
concerning the structure of the Hamiltonian, and by 
(15) and (16), concerning the structure of p. The as­
sumptions about p are not quite consistent with the 
concept introduced in Sec. 2a that p also represents a 
thermal equilibrium state, because (16) requires p to 
be stationary with respect to Ho(h) whereas thermal 
equilibrium implies that it is stationary with respect to 
the complete Hamiltonian. Indeed, the interaction be­
tween molecules introduces correlations—probably 
minor ones—that are excluded by (15). 

This difficulty is of no immediate concern when one 
intends, as in the present paper, to carry out a density 
expansion of the quantity of interest to lowest order in 
the gas density. The correlations introduced by the 
interaction between molecules in the equilibrium state p 
vanish to lowest order and would have to be included 
only in successive terms of the expansion. 

Alternatively one might regard (15) and (16) as the 
definition of an initial state whose properties can, in 
principle, be assigned arbitrarily (provided only they 
are consistent with quantum mechanics). This matrix 
is perturbed by multiplication with x, which is not 

11 The author is indebted to Dr. R. Zwanzig for the introduction 
of this operator. 
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relevant here, and then evolves in time in accordance 
with (9) and (10). The expression [a)-L0

(s)-(Mc(u))1-1 

X(p(s)#) in (21) represents the Fourier transform of 
Tr&[exp(—iHt)p% exp(iHt)~] which is the density matrix 
of the system of interest at the time /. Equation (21) 
itself represents the Fourier transform of the expectation 
value of x at / after the fixed initial time. From this 
point of view, correlations between system and bath 
are merely stated to vanish at £=0. Whatever correla­
tions will build up at later times are taken into account 
implicitly in (Mc(a>)). The correlation problem is thereby 
shifted to later consideration in the study of (Mc(u)).12 

3. QUALITATIVE DISCUSSION OF (M^co)) 

A simple spectrum will occur in pressure broadening 
only when (M"c(o>)) in (21) has suitable simple proper­
ties. The same remark applies to any other phenomena 
that lead to an equation of the same type. In fact, 
statements about experimental features of relaxation 
can be reduced to statements about properties of 
(Mc(oo)). For purpose of orientation we indicate here 
the physical consequences of some possible properties of 
(Mc(o))) and then we shall try to trace back the origin 
of such properties. 

a. Simple Situations 

1. The Limiting Case of Zero Interaction 

If (Mc) were to vanish, L0
(s) and (co—Z0

(s))_1 would 
be diagonal, as seen from (13), and (21) would reduce to 

F(o)) = — 7T_1 Im Ylfiv ^*(co—co^)-1(p^)M^ —» 
5(co—av)(p#)M„, (25) 

where the last expression represents the limit for 
lmo>=0+. In this event, then, the spectrum reduces 
to the unperturbed line spectrum of the molecule of 
interest, as it should. 

2. Possible Diagonalization of LQ(S)+(MC(CO)) 

A line spectrum also arises whenever a linear trans­
formation Sj)(XV is found such that 

(SlL^+iMcicomS-^j^cojdj,. (26) 

The eigenvalues coy are generally complex because (Mc) 
is not Hermitian. The oscillations corresponding to the 
spectrum F(co) would be damped provided lma>y<0, i.e., 
provided i((Mc)—(Mc)t) is a positive matrix (see 3b-3 
below). The diagonalization succeeds only if Z,(0)+(M"C) 
commutes with its Hermitian conjugate. Therefore, 
this commutability should be verified whenever a relax­
ation phenomenon is observed to proceed through 
damped-harmonic oscillations. 

12 The present author pointed out in the past, Phys. Rev. 96, 
869 (1954), the opportunity of introducing at an early stage of the 
treatment an operator that, like (Mc(o>)), represents the total 
action of the bath on the system of interest. However, this sugges­
tion did not prove fruitful in the absence of the Liouville repre­
sentation technique. 

3. Non-Markoffian Behavior 

The dependence of (Mc{u>)) on a> implies that the rate 
of variation of the state of the system at the time t 
depends on the state at earlier times tf<t through an 
integral "memory" operator, i.e., that the state evolu­
tion is non-Markoffian. In practice, the dependence of 
(Mc) on co is often negligible over a limited frequency 
range of practical interest; we say, in this event, that 
the bath has a negligibly short memory. 

4. Perturbation Treatment 

Insofar as 

{(Mc)^^/(0)^-0)^) | « 1 , for (M,j/)^ ( M ' / ) ? (27) 

Low+(Mc) can be diagonalized approximately. Pres­
sure broadening is often adequately treated in this 
manner in the lowest approximation in which off-
diagonal elements are discarded altogether. The trans­
formation S of (27) is then the identity and one simply 
replaces in (25) each eigenvalue coM„ of L0

(s) by the 
corresponding displaced approximate eivenvalue 

(Lo(s)+(M"c))M,,M,-co^+<Mc)M,,MV. (28) 

The "shift" and "width" of the level are then 

dp, — ReiMc)^ >flv, WpV = — Im(JkfC)M„ >flv. ( 2 9 ) 

References 2 and 3 have been specifically concerned 
with situations where (27) breaks down for a group of 
narrowly spaced levels. The portion of the matrix 
(co—Z,0

(s) — (Mc))"1 in (21) that corresponds to these 
levels remains then nondiagonal and gives an aggregate 
contribution to F(co) which departs from a Lorentz 
line shape. 

5. Rydberg-Ritz Principle 

A corollary of the preceding remarks is that, in the 
approximation (27), Eq. (2) holds if, and only if, (Mc) 
can be resolved in the form 

<Afe>^^=<r>M-<r>.. (30) 

It will be seen in Sec. 5b that only a portion of (Mc) can 
be cast in the form (30). 

b. Structure of (Mc) 

1. Connection Between (Mc) and (M) 

The appearance of operator 1—P in the perturbation 
expansion (22) of Mc shows it to have the character of 
a "linked diagram" expansion. This character is absent 
in the corresponding expansion (14a) of M. Observe 
also that the expansion of (M) into powers of (Mc), 
reciprocal to (20), namely, 

(M(co)) = [l-(Mc)(co-Z0(^)-1]-1(Mc) 

= (MC) t l(o>-Us))-KMc)~]« (31) 
n=0 
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contains only positive terms and thus corresponds to 
the construction of a general operator as a sum of 
powers of linked-diagram or "connected" operators. 
Thus, (Mc) would appear to have a more fundamental 
character than (M). On the other hand, (M) will be 
seen to have simpler properties than (Mc). 

2. Equations Obeyed by M and Mc 

The expressions (14a) and (22) obey, respectively, 
the equations 

M = L i + L i -M, (32) 
co—Lo 

\-P 
MC=L1+L1 Mc. (33) 

co-—Lo 

As pointed out by Zwanzig,1 these equations are of the 
type introduced by Lippman and Schwinger in scatter­
ing theory. In fact (32), which is independent of assump­
tions about the state of the system, is the exact analog 
of the Lippman-Schwinger equation in the Liouville 
representation. The convention (3a) about the sign of 
Imco characterizes both M and Mc as transition opera­
tors of the T ( + ) type. 

3. Expression of M in terms of Hermitian Operators 

As the Lippman-Schwinger transition operator or the 
scattering matrix can be expressed in terms of the 
reaction operator, which is Hermitian, so can we 
proceed here by resolving the propagator (co-— Lo)-1 

according to the well-known formula 

1 1 1 
lim =l im =(P M(<a'-L0), (34) 
e=° co-Zo c=0 o)'+ie-LQ co ' -L 0 

where co' = Reco and (P indicates that the Cauchy prin­
cipal part is to be taken when integrating over the poles 
of (co'-Zo)-1. Substitution of (34) into (14a) or (32) 
yields 

M(^+iO) = N^%l+iwd(co,~L0)N(^,)']-\ (35) 

where 

r 1 V 
i\T («,') = Li 1-(P Li 

L co'-Zo J 
1 

= L1+L1(P # ( « ' ) (36) 
co'—Lo 

is Hermitian, as seen, e.g., from its perturbation expan­
sion. Equation (35) can also be expressed in the form 

M(a>'+iO) = M'(a>'+iO)-iTrM"(u'+iO), (37) 

M,(co,+iO) = iV(co,){l+C7^5(co,-Zo)iV(co,)]2}-^ (37a) 

Mff(a>'+iO)==N(G>')d(a)'-Lo)N(a>') 

X i l + E T r a ^ - L o ) ^ ^ ) ] 2 } - 1 

= J f (« / +«) )« (« / -Zo )3 f (« / +*0) , (37b) 

where both M' and M" are Hermitian and M" is non-
negative, since it involves only even powers of N. 

This result is a start to study the damping of the 
oscillations corresponding to the spectrum F(oo)y i.e., 
to study under what conditions i((Mc)—(M"c)t) is in 
fact positive (see Sec. 3a-2). I t will be seen in Sec. 5b 
that the oscillations are indeed damped under the 
conditions of our treatment of pressure broadening. 
In general, however, we must consider that, even 
though Mc can be expressed in terms of an operator Nc 

analogous to N, this Nc would not be Hermitian owing 
to the presence of the non-Hermitian operator P in its 
definition. Alternatively, (Mc(o>)'+ie)) can be expressed 
in terms of {M') and of {M") by means of (20), but 
these operators are themselves no longer Hermitian 
after the averaging. 

4. Short Memory Approximation 

The perturbation expansion of (Mc) or (M) into 
powers of the interaction Li, as given in (22) or (14a), 
is probably relevant to numerous relaxation problems, 
though not to our treatment of pressure broadening. 
The first term of the expansion, (Mc)^(M)^(Li)y does 
not contribute to relaxation because it represents the 
effect of the average potential exerted by the bath on 
the system and could be simply included in Lo. There­
fore, the key term of the expansion is the second one, 
(Li(l—P)(o)—Lo)~1L1)y if the expansion converges 
rapidly. Rapid convergence depends on the smallness 
of the effective (i.e., suitably averaged) value of 
(l — P)(u—Lo)-1L1. Since matrix multiplication of this 
operator by L\ involves a summation over the con­
tinuous spectrum of eigenvalues of Loib), the effective 
value of (o)—Lo)-lLi will be small if a large range of 
Z,o(6) is involved so that (co—L0) is, on the average, 
larger than L\. This situation of broad spectral range is 
interpreted physically by the statement that the bath 
has a short memory so that the interaction L\ can 
build up only a small cumulative effect during a single 
memory period. Over a long period of time, the interac­
tion effect builds up as though it resulted from a long 
series of weak and short elementary processes, even 
though no such elementary processes are, in fact, 
identifiable on a microscopic time scale.13 

4. EXPANSION INTO POWERS OF 
THE GAS DENSITY 

In this section we expand (Mc), for the pressure 
broadening problem, into powers of the volume density 
of molecules that interact with the radiating molecule 
of interest. Following a familiar procedure, a finite 
volume, v, of gas containing n molecules will be con­
sidered initially, and then the limit will be taken for 
v—» oo? n~^ oo, n/v= const. Our procedure and results 

13 R. Zwanzig, reference 1, has been particularly concerned 
with the short memory type of approximation. The fact that a 
perturbation approach to relaxation implies a short memory had 
been emphasized in reference 12. 
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coincide in essence with those of Watson14 and of 
Siegert and Teramoto.15 

Set 

v=i:vi+i:j:vii, m 
where Vi indicates the interaction between the molecule 
of interest and the ith "other molecule," and Vij the 
interaction between the ith and jth "other molecules." 
Equation (12b) gives then 

L!=i: Li+H La (39) 

Li=Vi-Vi*, Lij^Va-Vii*. (39a) 

Because each matrix element of Vi contains the 
product of two wave functions of the motion of the ith 
molecule in the volume v, Li is of order ir1. For a similar 
reason Vij is of order v~2. Any power of Li, say Lip, is 
also of order zr1 because the (p— l)-fold matrix product 
in Liv contains p—\ phase-space integrations, each of 
which yields a factor v. Similarly, any power of Lij is of 
order v~2. Products LipLjqLijr are also of order v~2. The 
product of any sequence of operators with m different 
indices is of order v~m. 

The expansion of (M) will be treated directly, that of 
(Mc) resulting from (20). (The first term is the same, 
of course, for both expansions.) Substitution of (39) into 
the last expression of (14a) yields a multiple sum of Li 
and Lij which can be organized in the form 

i=l i=2 j 

+ZT,3'EMijlc^+---, (40) 
i j h 

where M^l) is a sum of products of Li and (co—£o)~\ 
Miji2) a sum of products of Li, Lj, Lij and (co—£o)~S 
Mijk^ a sum of products of L Lik, Ljk and 
(co—Lo)-1, etc. 

Upon carrying out the operation ( ), we see that 
(Mi(1)) is independent of i, (Mij(2)) independent of i 
and j , etc., if all molecules are identical. If there are 
different kinds of molecules the result is more compli­
cated but substantially equivalent for our purpose; we 
shall disregard this possibility in the following. Equa­
tion (40) yields, then, 

{M)=n(MiV)+ln{n-\){MijM) 

where the ^th term is of order np, through (J), of order 

14 K. M. Watson, Phys. Rev. 103, 493 (1956). 
15 A. J. F. Siegert and Ei Teramoto, Phys. Rev. 110,1232 (1958). 

v~p, through (M(p)), and therefore, of ^ th order in the 
gas density n/v. This term represents, of course, the 
effect on the radiating molecule of multiple collision 
processes involving p other molecules. Thus, (41) is the 
desired expansion and the remaining task consists of 
discussing the structure of its successive terms. 

Each of the operators lf4y...z(p) can be constructed by 
the following recursive procedure. Delete from (39) all 
terms with indices that are not included in the list i, 
j " -l, and substitute the residual L\ into (14a). This 
yields, for p=l, 2- • •, 

tl-Lifa-Lo^J-iLi^mi^MiV (42) 

[ 1 - (Li+Lj+L^ic-Lo^TKLi+Lj+Lij) 

= MiV+MjV+MijV\ (42a) 

etc. The symbol nti has been introduced in (42) for 
later convenience. 

In the expansion of (42a), or of analogous higher order 
expressions, into powers of the Li and Lij, each term 
consists of a product of " runs" of factors that contain 
only one of the operators, say Lj. Such a run of factors 
is equal to [Ly(co—Zo)-1]3-1!^. The sum of all terms 
of the expansion which differ only in the length of 
a particular run is obtained by taking its lowest 
(run-of-one) term and replacing its single factor Lj by 
Xl^o00 ZLj(co--Lo)~1']qLj=mj. Similarly, the sum of all 
terms with a run of Lij of varying length is expressed in 
terms of 

ll-Lijioi-Loy^Lij^mij. (43) 

I t follows that each term of the expansion of M can be 
expressed in terms of the scattering operators wii and 
ntij rather than in terms of the corresponding interaction 
operators Li and Lij. The operator nii pertains to 
collisions between the "radiating molecule" and one 
"other molecule," and m^ to collisions between two 
"other molecules." 

The expressions of (42a) and of the higher elements 
of the same set in terms of w» and ntij are quite com­
plicated. This is to be expected in view of the nature 
of multiple collisions. As an example we give here the 
expression of (42a). To this end we define 

A i = [ l - (Li+Lj)(a>-Lo)-13(Li+Lj) 

( 1 \ ( 1 l Y"1 

+ ( l+mi • jntjl 1 m% ntj J , (44) 
\ O)—LQ/ \ co—Lo co—LQ / 

+ ---+(n)(Mij...i^)+---, (41) =(l+«, U l m, ml) 
\p/ \ W—LQ/ \ w—Lo co—Lo I 



266 U . F A N O 

which contains only tm and ray. One finds, then, We show that (46) is solved by17 

MiV+MjV+MijW > = Da+ (1+Dn W 
\ co—Lj 

X(l Di3 tm!) U+ DiX (45) 
\ co—Lo co—Lo / \ co—Zo / 

5. REDUCTION TO COLLISION AMPLITUDES 

In this section we express the transition operator tm, 
defined by (42), which pertains to a collision of the ith 
"other molecule" with the "molecule of interest" in the 
Liouville representation, in terms of the corresponding 
transition amplitude operator U of the ordinary wave 
function representation. The subscript i will be dropped 
for simplicity from ra» and ti, from the interaction F» 
and Li and from Lo(bi) = Ho{bi)—Ho(bi)* which pertains 
to unperturbed states of the ith. molecule. 

The formal development will apply equally to ra* and 
to the complete operator M, even though ra* pertains 
to an elementary collision process and M does not. 
This difference would have a bearing on the discussion 
of the final results, but up to that point one may simply 
replace at each stage M for miy the full interaction V 
for Vi and an over all transition operator T for t{. 

In the explicitly time-dependent representation (5) 
the quantity corresponding to m (u) is simply the direct 
product of two scattering operators that correspond to 
exp(-iHt) and exp(iHt) in the interaction representa­
tion. The analog of ra(co) is then, in essence, simply a 
product of the analogs of t and /*. Accordingly, in our 
Fourier representation ra(co) will be expressed by a 
convolution integral.16 

a. The Integral Representation 

The operator ra(co) defined by (42) obeys the equation 
analogous to (32) 

1 
m(oo) = L+L m(co), lm(co)>0. (46) 

co—Lo 

The corresponding transition amplitude operator obeys 
the Lippman-Schwinger equation 

ty,) = y+y /(^)> i m ( ^ ) > 0 

whose complex conjugate is 

1 

(47) 

/*(^*)=7*+y*-
i £ * -#o* 

-J*^*) , lm(^*)<0 . (47a) 

16 Since L=V— F* one could represent m(o>) by means of (44), 
replacing Li by V, Lj by — V*, mi by t and m3- by — /*. However, 
(44) is merely the condensed form of a geometric series. We can 
do better in our problem because V and V* and, respectively, / 
and /* operate on different variables and thus commute freely, 
whereas mi and mj do not. 

m(o)) = -
0)-LQ r °° + ^ 

2wi 
/ dM < 

J-oo+iV ilp — Ho 

•**(*-a>H 
1 1 

^-co-J^o* 

x/(^)/*(^-«) 
where 

<A-£r0^-co-#o* 

co—Lo 

e=Imcc>rj>Q 

(48) 

(48a) 

so that l m ( ^ - c o ) < 0 . 
The integrand of (48) has singularities on the axes 

l m ^ = 0 and I m ^ = e above and below the integration 
path. Singularities or cuts of tty) and J*(^—co) pre­
sumably cover each of these axes, respectively, but the 
singularities of (^—Ho)"1 and (\f/—co—#o*)-1 consist of 
a single pole corresponding to an eigenvalue of Ho or 
27o*. Because the integrand converges at least as \p~2 at 
infinity, the contributions of the first two terms in the 
braces of (48) can be obtained by looping the integra­
tion path around isolated poles on the axes I m ^ = € 
and l m ^ = 0 , respectively. Therefore, and because 
co-Zo= ty-Ho)-ty-co--Ho*), (48) becomes 

f»(«) = /(co+fl ro*)-**(ffo-«) 

1 /•«**» r 1 I n 

+— # 
2^7-00+*,, \-\j/—Ho ip—co—i70 J 

X*(*)/*(*-«)r 1. (49) 
U - f f o ^-co-JETo*J 

To verify that (48) or (49) satisfy (46) we note that 

1 = ( 2 « r <fy(u-Lo)/(!l'-H0)ty-a-H0*), (50) 
-oo+ir) 

and, therefore, from (48) 

X 

1 r^* r 1 -] 
m(co)= / # 1 + m 

-Lo J-c*>+iy L \p — Ho J 

oi—Lo 

L \p—o}—Hd ty-H*)($-u-H{) 

(51) 

Multiplication of this formula from the left by F— F* 
and application of (47) and (47a) yields the right-hand 

17 An analogous convolution has been used to combine contribu­
tions of unlinked diagrams, where the vertices of different dia­
grams commute and only the propagator variables have to be 
disentangled, as in our problem. See N. M. Hugenholtz, Physica 
23, 481 (1957). 



P R E S S U R E B R O A D E N I N G A S P R O T O T Y P E O F R E L A X A T I O N 267 

side of (46) in the form 

1 rcc+ir} f r 1 -| 

— / # W) i+ **(*-«) 
2iri J -oo+ir) I L \f/--Q)—Ho* J 

[ - 1 - 1 1 o)-LQ 

- 1+ 1®) /*(*-«) - - . 
L js-Ho J J ( ; A - # o ) ( i £ - c o - # o * ) 

(52) 

The procedure used to reduce (48) to (49) reduces also 
(52) to (49), which represents the left-hand side of (46), 
thus concluding our verification. 

Consider now the expression (49) of w(w), with the 
purpose of evaluating the integral within it. The inte-

where a/ = Reco, (P means "principal pa r t / ' and 

g(y) = — / <fy'(? tfy'+iO)t*ty'-a'-iQ). (55a) 
2-wiJ-^ ty'—y 

The two 5-function singularities in (55) arise for­
mally from the imaginary part of a> in the two factors 
(Hoi—u—Hor*)-1 and (u+Hoi*—Hor)~

x on the right-
hand side of (53). [The other two factors (Hoi—Hor)~

l 

and (Hoi*—Hor*)"1 contain no such imaginary par t . ] 
In effect, the singularities are contributed by integra­
tion over a high saddle point as anticipated above. 

b . Discussion 

The result (55) is still complicated. In its further 
analysis one should recall that, for application to 
pressure broadening, one is actually interested in the 

gration path skirts the singularities of l/(\f/—Ho) and 
l/(\f/—a>—Ho*) leaving the former ones on its right 
and the latter ones on its left. The contributions to the 
integral arising from the skirting of singularities will be 
seen to vanish except when the path has to traverse a 
high saddle point between a singularity on the right and 
one on the left which happen to occur at equal values 
of Rap. This contribution arises from the cross terms 
in the product of the braces in (49) and is very im­
portant for pressure broadening. All other contributions 
are nonsingular and will be seen to be small under 
conditions of simple pressure broadening. 

Let us label the operators Ho or #o* with suffixes / 
or d, depending on whether they operate on the left or 
right of tt* in (49), and write 

diagonal matrix elements of the average m, namely 
(Mlco'+iO))^^, to be entered in (28). (Recall from 
Sec. 4 that (M^)^n(m) to first order in the gas density 
n/v.) Moreover the values of a/ relevant to this matrix 
element is a/~wM„ as seen in Sec. 3a; therefore, we are 
concerned with 

(w(&jM„+iO))M„iMF. (56) 

E a c h of t he first two te rms on the r igh t -hand side of 
(55) opera tes on half of the var iables . The i r combined 
cont r ibut ion to (56), calculated from (17a), is 

2-u.ft LyKTlJ- I Ta)na,ixa t \Tp\Ta)va,va_\ja' \p') 

This expression consists of transition matrix elements 
lor forward scattering (i.e., diagonal in a) evaluated on 
the energy shell. I ts value can be obtained, at least in 
principle, from single scattering experiments. I t obeys 
the Rydberg-Ritz principle, in accordance with (30). 

= {Hu-H^W-Hu)-1- (t-Hory^+iHof-HoSyiW-u-Ho,*)-1- (^-co-ffo,-*)-1] 
+ (Hv-co-Hor^ttt-Hn)-1- (^-co-ffo,*)-1]- ^+Hol*-H0ry

iZ^-o1-H0n-'- ^-H0r)-^. (53) 

Equation (36) can now be applied in the limit 

i j = I m ^ - » 0 + , e = I m c o - ^ 0 + , e - i j - + 0 + , (54) 

after which the integral over ^ in (49) resolves into contributions of the singularities and of principal parts. One finds 

*»(w'+*0) = ((w'+H,*) -t*(H0-w') 

1 f t(H0i)t* (Ha-a') -t(H0r)t* (Hor-w') t(Hol*+co')t* (Hol*) -t(H0r*+u')t* (H0r*) 

21 Hoi—Hor Hoi —HOT 

+S> +2TiS(H0l-w'-Ho*)t(H0l)t*(HOr*) 
Hoi—wr—Hor 

t(Hm*+0>')t*(H0l*) + t(Hor)t*(H0r-0>') 
-9 +2TTi5(Hoi*+u'-Hor)t(H0r)t*(Hm*) 

Hoi ~\~uf—Hor 

g(H0l)-g(H0r) g(ff«M*+»')-*W+«') g(H0l)-g(H0r*+O>') g(H0l*+O>')-g(H0r) 

Hoi — Hor HQI* — Hor* Hoi — 01f — Hor* H oi* ~\~ 0)'— H Or 
(55) 



268 U . F A N O 

The real and imaginary parts of (57) can be sepa­
rated, the imaginary part being related to the total 
scattering cross section by the optical theorem (em­
phasized in B i l l , p. 864). The separation can be per­
formed in accordance with Sec. 3b-3, which yields 

xii+C^^-^o)^^')]2}-1 

= ^(^){1+M(co , -Zr 0 )^ (ca0] 2 }- 1 

-iirt(a>'+iOtf8(to'-HoXa}'+iO), (58) 

where k(uf) is the Hermitian reaction matrix corre­
sponding to t(oi'+iO). The two terms thus separated 
are, respectively, Hermitian and anti-Hermitian and 
contribute, respectively, the real and imaginary parts 
of (57) because the matrix elements in (57) are diagonal. 
These two parts contribute to the shift and width of 
the oOfiv line, according to (29). The imaginary part has 
negative sign, for the reason mentioned following (37b) 
taking again into account that we deal here with di­
agonal matrix elements, so that this contribution to 
the spectrum F(co) corresponds to damped oscillations, 
as expected. The last term of (58) is clearly proportional 
to a total scattering cross section; the cross sections for 
the states /* and v (initial and final states) contribute 
additively to the linewidth when (58) is entered in (57). 
Note also that when k(<u') is small, i.e., when the 
scattering phase shifts are small—which does not neces­
sarily imply validity of the Born approximation—the 
real part of (57) is small of first order but the imaginary 
part is of second order. In this event, all additional terms 
of (55) are also small of second order, so that the only 
first-order effect is the line shift contributed by (57). 

Consider now the singular terms, namely, the sixth 
and the eighth, on the right-hand side of (55). Setting 
co' = a v and introducing the appropriate eigenvalues of 
Ho, we find the joint contribution of these terms to 
(56) to be 

27T^Xl^^(r/3~r«)^(7'a+^)Mi3,M^*(r«+7"'')»'/3,m/a. (59) 

This contribution consists again only of transition 
matrix elements on the energy shell, such as may be 
obtained from scattering experiments. Clearly this con­
tribution does not obey the Rydberg-Ritz principle. I ts 
real and imaginary parts are a little more difficult to 
disentangle than for (57) because (59) involves off-
diagonal matrix elements. 

Baranger has shown (Bi l l , pp. 864, 865) how the 
imaginary part of (59) combines with the corresponding 
part of (57) to yield a characteristic quantum effect. 

(Note that the operator product tt* appears both in 
(59) and in the last term of (58).) According to (57) the 
linewidth is proportional to the frequency of scattering 
of gas molecules by the molecule of interest, averaged 
over the states tx and v of this molecule. Quantum me­
chanically, elastic scattering by these two states does 
not constitute a pair of distinguishable, mutually ex­
clusive events. Therefore, the probability amplitudes 
for elastic scattering interfere and indeed would cancel 
out completely the contribution of elastic scattering 
to the linewidth if they happened to be equal, because 
in this event elastic scattering wouldn't perturb the 
molecular radiation process at all. That (59) relates 
only to elastic scattering is shown by the factor 
8(T0—TO). 

The remaining terms of (55) depend entirely on 
transition matrix elements evaluated off the energy 
shell. Indeed their contribution would manifestly vanish 
if the transition operator t(\p) were independent of its 
energy parameter \p. Therefore, this contribution repre­
sents the effect of transient stages of collisions whereas 
(57) and (59) depend only on characteristics of com­
pleted collisions. As Baranger has emphasized through­
out,2 the relative rate of variation of t as a function of 
yp (an energy expressed in frequency units) represents a 
measure of the effective duration of a collision. Baranger 
left effects of this type out of consideration whenever 
they arose in the course of his calculations2 in accordance 
with his assumption that each collision can be regarded 
as sufficiently short to be well separated from the others. 
The treatment of the present paper has provided in 
(55) an analytical representation of the transient effects, 
but additional research is required to analyze them and 
evaluate their significance in alternative conditions of 
interest. 

As noted at the beginning of this section, the 
whole treatment leading to (55) could serve to ex­
press the operator M(o)), irrespective of any gas 
density expansion, in terms of a transition operator 
r ( ^ ) = [ l - F ( ^ - f l r

0 ) - 1 J " 1 F . The construction of matrix 
elements of (M(u>)) in terms of matrix elements of T 
could also be carried out and the contribution of matrix 
elements on the energy shell discussed, as in the case of 
(M(ov)), even though these elements no longer appear 
to pertain to recognizable separate elementary collision 
processes. However, there would seem to be no reason to 
disregard the transient effects. 
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